library(groupedHyperframe)
library(survival)3 Grouping ppp-Hypercolumn
The examples in Chapter 3 require that the
searchpath contains the followingnamespaces,
search path on author’s computer running RStudio (Posit Team 2025)
search()
# [1] ".GlobalEnv" "package:survival" "package:groupedHyperframe" "package:stats" "package:graphics" "package:grDevices" "package:utils"
# [8] "package:datasets" "package:methods" "Autoloads" "package:base"In Chapter 3, the author
- creates a grouped hyper data frame with one-and-only-one point-pattern (
ppp) hypercolumn (Section 3.1); - discusses the batch processes of spatial point-pattern analyses applicable to the one-and-only-one point-pattern hypercolumn of a (grouped) hyper data frame (Section 3.2);
- summarizes the results of the batch-processes (Section 3.3)
- aggregates the summary statistics over the nested grouping structure (Section 3.4).
3.1 Creation
Listing 3.1 creates a grouped hyper data frame s with one-and-only-one (Section 20.14) point-pattern (ppp, Chapter 27) hypercolumn from the data frame wrobel_lung. This process (Section 19.1)
- creates a point-pattern hypercolumn
ppp.from the \(x\)- and \(y\)-coordinates, the numeric markhladrand the multi-type markphenotype, perimage_idnested withinpatient_id; - aggregates other variables of interest, e.g.,
OS,genderandage, at the level ofimage_idnested withinpatient_id. Those variables must be identical within the nested grouping structure~patient_id/image_id.
ppp-hypercolumn
s = wrobel_lung |>
grouped_ppp(formula = hladr + phenotype ~ OS + gender + age | patient_id/image_id, data = _, coords = ~ x + y)s
s
# Grouped Hyperframe: ~patient_id/image_id
#
# 15 image_id nested in
# 3 patient_id
#
# Preview of first 10 (or less) rows:
#
# OS gender age patient_id image_id ppp.
# 1 3488+ F 85 #01 0-889-121 [40864,18015].im3 (ppp)
# 2 3488+ F 85 #01 0-889-121 [42689,19214].im3 (ppp)
# 3 3488+ F 85 #01 0-889-121 [42806,16718].im3 (ppp)
# 4 3488+ F 85 #01 0-889-121 [44311,17766].im3 (ppp)
# 5 3488+ F 85 #01 0-889-121 [45366,16647].im3 (ppp)
# 6 1605 M 66 #02 1-037-393 [56576,16907].im3 (ppp)
# 7 1605 M 66 #02 1-037-393 [56583,15235].im3 (ppp)
# 8 1605 M 66 #02 1-037-393 [57130,16082].im3 (ppp)
# 9 1605 M 66 #02 1-037-393 [57396,17896].im3 (ppp)
# 10 1605 M 66 #02 1-037-393 [57403,16934].im3 (ppp)Figure 3.1 visualizes the one-and-only-one point-pattern hypercolumn s$ppp. using package spatstat.geom (v3.6.1); further details are provided in Section 20.1.
s$ppp.
Code
s[1:4, ] |> # first 4 rows
spatstat.geom::plot.hyperframe(
e = quote(plot(ppp., main = paste(patient_id, image_id, sep = '\n'))),
main = "First 4 ppp's"
)s$ppp.
Readers must note that Chapter 2 and Section 3.1 describe two independent approaches to
- create a grouped hyper data frame, from a data frame (Chapter 2, Listing 2.2, Section 14.1);
- create a grouped hyper data frame with one-and-only-one point-pattern hypercolumn, from a data frame (Section 3.1, Listing 3.1, Section 19.1).
These two approaches are independent and unrelated to each other (Section 36.1).
3.2 Batch Process on Eligible Marks
Listing 3.4 applies multiple batch processing functions to the eligible marks in the one-and-only-one point-pattern hypercolumn in the (grouped) hyper data frame s (Section 3.1, Listing 3.1) using a pipeline.
Listing 3.4 calculates, from each point-pattern of the one-and-only-one point-pattern hypercolumn s$ppp.,
- the conditional mean \(E(r)\) of the numeric mark
hladrusing functionEmark_()(Table 27.18). The results are stored in the function-value-table (fv, Chapter 15) hypercolumn (Chapter 16)$hladr.Eof the output (Listing 3.5). - the multi-type nearest-neighbor distance \(G_{\text{CK+.CD8- to CK-.CD8+}}(r)\) of the multi-type mark
phenotypeusing functionGcross_()(Table 27.19). The results are stored in the function-value-table hypercolumn$phenotype.Gof the output (Listing 3.5). - the nearest neighbor distance from
CK+.CD8-toCK-.CD8+marks in the multi-type markphenotypeusing functionnncross_()(Table 27.20). The results are stored in the numeric-hypercolumn$phenotype.nncrossof the output (Listing 3.5).
Listing 3.4 lastly substitutes the recommended function values outside the recommended range with the corresponding theoretical values using function .disrecommend2theo() (Section 15.4.1). The function-value-table hypercolumns $hladr.E and $phenotype.G of the output are replaced with the substituted function-value-table hypercolumns.
r = seq.int(from = 0, to = 250, by = 10)
out = s |>
Emark_(r = r, correction = 'none') |>
Gcross_(i = 'CK+.CD8-', j = 'CK-.CD8+', r = r, correction = 'none') |>
nncross_(i = 'CK+.CD8-', j = 'CK-.CD8+', correction = 'none') |>
.disrecommend2theo()out; batch processes on one-and-only-one ppp-hypercolumn
out
# Grouped Hyperframe: ~patient_id/image_id
#
# 15 image_id nested in
# 3 patient_id
#
# Preview of first 10 (or less) rows:
#
# OS gender age patient_id image_id ppp. hladr.E phenotype.G phenotype.nncross
# 1 3488+ F 85 #01 0-889-121 [40864,18015].im3 (ppp) (fv) (fv) (numeric)
# 2 3488+ F 85 #01 0-889-121 [42689,19214].im3 (ppp) (fv) (fv) (numeric)
# 3 3488+ F 85 #01 0-889-121 [42806,16718].im3 (ppp) (fv) (fv) (numeric)
# 4 3488+ F 85 #01 0-889-121 [44311,17766].im3 (ppp) (fv) (fv) (numeric)
# 5 3488+ F 85 #01 0-889-121 [45366,16647].im3 (ppp) (fv) (fv) (numeric)
# 6 1605 M 66 #02 1-037-393 [56576,16907].im3 (ppp) (fv) (fv) (numeric)
# 7 1605 M 66 #02 1-037-393 [56583,15235].im3 (ppp) (fv) (fv) (numeric)
# 8 1605 M 66 #02 1-037-393 [57130,16082].im3 (ppp) (fv) (fv) (numeric)
# 9 1605 M 66 #02 1-037-393 [57396,17896].im3 (ppp) (fv) (fv) (numeric)
# 10 1605 M 66 #02 1-037-393 [57403,16934].im3 (ppp) (fv) (fv) (numeric)3.3 Summarization
3.3.1 of Statistics of Point-Pattern Marks
Listing 3.6 summarizes various customized statistics of the numeric- and/or multi-type-marks of the one-and-only-one point-pattern hypercolumn in the (grouped) hyper data frame s (Section 3.1, Listing 3.1) using function aggregate_marks() (Section 20.6). The results are stored in the numeric-hypercolumn $markstats of the output (Listing 3.7).
Listing 3.6 does not require the function-value-table hypercolumns created by the batch processes (Section 3.2).
s_markstat = s |>
aggregate_marks(by = hladr ~ phenotype, FUN = \(z) {
c(mean = mean(z), sd = sd(z))
})s_markstat$markstats: summarizing customized statistics of point-pattern marks
Code
s_markstat$markstats[1:3]
# 1:
# CK-.CD8-.hladr.mean CK-.CD8-.hladr.sd CK+.CD8-.hladr.mean CK+.CD8-.hladr.sd CK-.CD8+.hladr.mean CK-.CD8+.hladr.sd
# 0.19611248 0.09574274 0.13157655 0.02220862 0.37042708 0.15887763
#
# 2:
# CK-.CD8-.hladr.mean CK-.CD8-.hladr.sd CK+.CD8-.hladr.mean CK+.CD8-.hladr.sd CK-.CD8+.hladr.mean CK-.CD8+.hladr.sd
# 0.32685110 0.26761137 0.11682620 0.04559459 0.56401579 0.26288830
#
# 3:
# CK-.CD8-.hladr.mean CK-.CD8-.hladr.sd CK+.CD8-.hladr.mean CK+.CD8-.hladr.sd CK-.CD8+.hladr.mean CK-.CD8+.hladr.sd
# 0.46421412 0.22013973 0.14423884 0.04331782 0.75227297 0.243058583.3.2 of fv-Hypercolumns
Listing 3.8 summarizes the function-value-table (fv, Chapter 15) hypercolumns (Chapter 16) out$hladr.E and out$phenotype.G from the batch processes (Section 3.2, Listing 3.4),
- by the recommended function values using function
keyval()(Section 15.1). The results are stored in the numeric-hypercolumns$hladr.E.yand$phenotype.G.yof the output (Listing 3.9); - by the cumulative average vertical height of the trapezoidal integration of the recommended function values using function
cumvtrapz()(Section 11.1). The results are stored in the numeric-hypercolumns$hladr.E.cumvtrapzand$phenotype.G.cumvtrapzof the output (Listing 3.9).
The functions keyval() and cumvtrapz() in Listing 3.8 are independent of one another. Readers may apply one or both, in whichever order suits their workflow.
fv) hypercolumns
out_fv = out |>
keyval() |>
cumvtrapz()out_fv, summarizing fv-hypercolumns
out_fv
# Grouped Hyperframe: ~patient_id/image_id
#
# 15 image_id nested in
# 3 patient_id
#
# Preview of first 10 (or less) rows:
#
# OS gender age patient_id image_id ppp. hladr.E phenotype.G phenotype.nncross hladr.E.y phenotype.G.y hladr.E.cumvtrapz phenotype.G.cumvtrapz
# 1 3488+ F 85 #01 0-889-121 [40864,18015].im3 (ppp) (fv) (fv) (numeric) (numeric) (numeric) (numeric) (numeric)
# 2 3488+ F 85 #01 0-889-121 [42689,19214].im3 (ppp) (fv) (fv) (numeric) (numeric) (numeric) (numeric) (numeric)
# 3 3488+ F 85 #01 0-889-121 [42806,16718].im3 (ppp) (fv) (fv) (numeric) (numeric) (numeric) (numeric) (numeric)
# 4 3488+ F 85 #01 0-889-121 [44311,17766].im3 (ppp) (fv) (fv) (numeric) (numeric) (numeric) (numeric) (numeric)
# 5 3488+ F 85 #01 0-889-121 [45366,16647].im3 (ppp) (fv) (fv) (numeric) (numeric) (numeric) (numeric) (numeric)
# 6 1605 M 66 #02 1-037-393 [56576,16907].im3 (ppp) (fv) (fv) (numeric) (numeric) (numeric) (numeric) (numeric)
# 7 1605 M 66 #02 1-037-393 [56583,15235].im3 (ppp) (fv) (fv) (numeric) (numeric) (numeric) (numeric) (numeric)
# 8 1605 M 66 #02 1-037-393 [57130,16082].im3 (ppp) (fv) (fv) (numeric) (numeric) (numeric) (numeric) (numeric)
# 9 1605 M 66 #02 1-037-393 [57396,17896].im3 (ppp) (fv) (fv) (numeric) (numeric) (numeric) (numeric) (numeric)
# 10 1605 M 66 #02 1-037-393 [57403,16934].im3 (ppp) (fv) (fv) (numeric) (numeric) (numeric) (numeric) (numeric)3.3.3 of Quantiles
Listing 3.10 inspects the hypercolumns of the input (grouped) hyper data frame out (Section 3.2, Listing 3.4) and finds the quantiles of,
- the numeric-hypercolumn
out$phenotype.nncross(Section 3.2, Listing 3.4). The results are stored in the numeric-hypercolumn$phenotype.nncross.quantileof the output (Listing 3.11); - the numeric mark
hladrin the one-and-only-one point-pattern hypercolumnout$ppp.(Section 3.1, Listing 3.1). The results are stored in the numeric-hypercolumn$hladr.quantileof the output (Listing 3.11).
out_q = out |>
quantile(probs = seq.int(from = 0, to = 1, by = .1))out_q: summarizing quantiles
out_q
# Grouped Hyperframe: ~patient_id/image_id
#
# 15 image_id nested in
# 3 patient_id
#
# Preview of first 10 (or less) rows:
#
# OS gender age patient_id image_id ppp. hladr.E phenotype.G phenotype.nncross phenotype.nncross.quantile hladr.quantile
# 1 3488+ F 85 #01 0-889-121 [40864,18015].im3 (ppp) (fv) (fv) (numeric) (numeric) (numeric)
# 2 3488+ F 85 #01 0-889-121 [42689,19214].im3 (ppp) (fv) (fv) (numeric) (numeric) (numeric)
# 3 3488+ F 85 #01 0-889-121 [42806,16718].im3 (ppp) (fv) (fv) (numeric) (numeric) (numeric)
# 4 3488+ F 85 #01 0-889-121 [44311,17766].im3 (ppp) (fv) (fv) (numeric) (numeric) (numeric)
# 5 3488+ F 85 #01 0-889-121 [45366,16647].im3 (ppp) (fv) (fv) (numeric) (numeric) (numeric)
# 6 1605 M 66 #02 1-037-393 [56576,16907].im3 (ppp) (fv) (fv) (numeric) (numeric) (numeric)
# 7 1605 M 66 #02 1-037-393 [56583,15235].im3 (ppp) (fv) (fv) (numeric) (numeric) (numeric)
# 8 1605 M 66 #02 1-037-393 [57130,16082].im3 (ppp) (fv) (fv) (numeric) (numeric) (numeric)
# 9 1605 M 66 #02 1-037-393 [57396,17896].im3 (ppp) (fv) (fv) (numeric) (numeric) (numeric)
# 10 1605 M 66 #02 1-037-393 [57403,16934].im3 (ppp) (fv) (fv) (numeric) (numeric) (numeric)3.3.4 of Kernel Density Estimates
Listing 3.12 inspects the hypercolumns of the input (grouped) hyper data frame out (Section 3.2, Listing 3.4) and finds the kernel density estimates of,
- the numeric-hypercolumn
out$phenotype.nncross(Section 3.2, Listing 3.4). The results are stored in the numeric-hypercolumn$phenotype.nncross.kerndensof the output (Listing 3.13); - the numeric mark
hladrin the one-and-only-one point-pattern hypercolumnout$ppp.(Section 3.1, Listing 3.1). The results are stored in the numeric-hypercolumn$hladr.kerndensof the output (Listing 3.13).
mdist = out$phenotype.nncross |> unlist() |> max()
out_k = out |>
kerndens(from = 0, to = mdist)out_k: summarizing kernel density estimates
out_k
# Grouped Hyperframe: ~patient_id/image_id
#
# 15 image_id nested in
# 3 patient_id
#
# Preview of first 10 (or less) rows:
#
# OS gender age patient_id image_id ppp. hladr.E phenotype.G phenotype.nncross phenotype.nncross.kerndens hladr.kerndens
# 1 3488+ F 85 #01 0-889-121 [40864,18015].im3 (ppp) (fv) (fv) (numeric) (numeric) (numeric)
# 2 3488+ F 85 #01 0-889-121 [42689,19214].im3 (ppp) (fv) (fv) (numeric) (numeric) (numeric)
# 3 3488+ F 85 #01 0-889-121 [42806,16718].im3 (ppp) (fv) (fv) (numeric) (numeric) (numeric)
# 4 3488+ F 85 #01 0-889-121 [44311,17766].im3 (ppp) (fv) (fv) (numeric) (numeric) (numeric)
# 5 3488+ F 85 #01 0-889-121 [45366,16647].im3 (ppp) (fv) (fv) (numeric) (numeric) (numeric)
# 6 1605 M 66 #02 1-037-393 [56576,16907].im3 (ppp) (fv) (fv) (numeric) (numeric) (numeric)
# 7 1605 M 66 #02 1-037-393 [56583,15235].im3 (ppp) (fv) (fv) (numeric) (numeric) (numeric)
# 8 1605 M 66 #02 1-037-393 [57130,16082].im3 (ppp) (fv) (fv) (numeric) (numeric) (numeric)
# 9 1605 M 66 #02 1-037-393 [57396,17896].im3 (ppp) (fv) (fv) (numeric) (numeric) (numeric)
# 10 1605 M 66 #02 1-037-393 [57403,16934].im3 (ppp) (fv) (fv) (numeric) (numeric) (numeric)3.4 Aggregation
Listing 3.14 aggregates (Section 20.5) the customized statistics of the numeric- and/or multi-type-marks of the one-and-only-one point-pattern hypercolumn (Section 3.3.1, Listing 3.6) by patient_id using point-wise means pmeans() (Section 32.4), and returns a hyper data frame.
s_markstat |>
aggregate(by = ~ patient_id, fun = pmean)
# Hyperframe:
# OS gender age patient_id markstats ppp.
# 1 3488+ F 85 #01 0-889-121 (numeric) (ppplist)
# 2 1605 M 66 #02 1-037-393 (numeric) (ppplist)
# 3 176 M 84 #03 2-080-378 (numeric) (ppplist)Listing 3.15 aggregates (Section 20.5) the summarized information from function-value-table (fv) hypercolumns (Section 3.3.2, Listing 3.8) by patient_id using point-wise means pmeans() (Section 32.4), and returns a hyper data frame.
out_fv |>
aggregate(by = ~ patient_id, fun = pmean)
# Hyperframe:
# OS gender age patient_id hladr.E.y phenotype.G.y hladr.E.cumvtrapz phenotype.G.cumvtrapz ppp. hladr.E phenotype.G
# 1 3488+ F 85 #01 0-889-121 (numeric) (numeric) (numeric) (numeric) (ppplist) (fvlist) (fvlist)
# 2 1605 M 66 #02 1-037-393 (numeric) (numeric) (numeric) (numeric) (ppplist) (fvlist) (fvlist)
# 3 176 M 84 #03 2-080-378 (numeric) (numeric) (numeric) (numeric) (ppplist) (fvlist) (fvlist)Listing 3.16 aggregates (Section 20.5) the quantiles from the numeric-hypercolumns or the numeric-marks of the one-and-only-one point-pattern hypercolumn (Section 3.3.3, Listing 3.10) by patient_id using point-wise means pmeans() (Section 32.4), and returns a hyper data frame.
out_q |>
aggregate(by = ~ patient_id)
# Hyperframe:
# OS gender age patient_id phenotype.nncross.quantile hladr.quantile ppp. hladr.E phenotype.G
# 1 3488+ F 85 #01 0-889-121 (numeric) (numeric) (ppplist) (fvlist) (fvlist)
# 2 1605 M 66 #02 1-037-393 (numeric) (numeric) (ppplist) (fvlist) (fvlist)
# 3 176 M 84 #03 2-080-378 (numeric) (numeric) (ppplist) (fvlist) (fvlist)Listing 3.17 aggregates (Section 20.5) the kernel density estimates from the numeric-hypercolumns or the numeric-marks of the one-and-only-one point-pattern hypercolumn (Section 3.3.4, Listing 3.12) by patient_id using point-wise means pmeans() (Section 32.4), and returns a hyper data frame.
out_k |>
aggregate(by = ~ patient_id)
# Hyperframe:
# OS gender age patient_id phenotype.nncross.kerndens hladr.kerndens ppp. hladr.E phenotype.G
# 1 3488+ F 85 #01 0-889-121 (numeric) (numeric) (ppplist) (fvlist) (fvlist)
# 2 1605 M 66 #02 1-037-393 (numeric) (numeric) (ppplist) (fvlist) (fvlist)
# 3 176 M 84 #03 2-080-378 (numeric) (numeric) (ppplist) (fvlist) (fvlist)